Sentiment Analysis on Twitter Social Media towards Shopee E-Commerce through Support Vector Machine (SVM) Method

  • Putri Samapa Hutapea Fakultas Informatika, Universitas Telkom (ID)
  • Warih Maharani Fakultas Informatika, Universitas Telkom (ID)
Keywords: sentiment, Shopee, Twitter, Word2Vec, SVM

Viewed = 0 time(s)

Abstract

Shopee is e-commerce widely accessed and used in this era. Many people use Shopee because the products offered are cheaper and more affordable. Despite the fact that Shopee is a well-known e-commerce, it still requires responses and suggestions from the public to maintain or improve the features required. In this study, public sentiment analysis was carried out on Twitter social media related to the Shopee marketplace. This study collected data that contained tweets from predetermined keywords and used Word2Vec and Support Vector Machine classification methods. The use of Word2Vec influenced the level of accuracy so that it increased for each SVM kernel. Meanwhile, the best hyperparameter tuning was found in the polynomial kernel, with an accuracy rate of 93.20%.



References

Siagian Ade Onny, Martiwi Rini, and Indra Natal, “Kemajuan Pemasaran Produk Dalam Memanfaatkan Media Sosial Di Era Digital,” J. Pemasar. Kompetitif, vol. 3, 200AD.

I. Zulfa and E. Winarko, “Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 11, no. 2, p. 187, 2017, doi: 10.22146/ijccs.24716.

H. F. Naufal and E. B. Setiawan, “Ekspansi Fitur Pada Analisis Sentimen Twitter Dengan Pendekatan Metode Word2Vec,” e-Proceeding Eng., vol. 8, no. 5, pp. 10339–10349, 2021, [Online]. Available: https://dev.twitter.com

P. H. Prastyo, A. S. Sumi, A. W. Dian, and A. E. Permanasari, “Tweets Responding to the Indonesian Government’s Handling of COVID-19: Sentiment Analysis Using SVM with Normalized Poly Kernel,” J. Inf. Syst. Eng. Bus. Intell., vol. 6, no. 2, p. 112, 2020, doi: 10.20473/jisebi.6.2.112-122.

I. Monika Parapat and M. Tanzil Furqon, “Penerapan Metode Support Vector Machine (SVM) Pada Klasifikasi Penyimpangan Tumbuh Kembang Anak,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, pp. 3163–3169, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

D. G. Nugroho, Y. H. Chrisnanto, and A. Wahana, “Analisis Sentimen Pada Jasa Ojek Online Menggunakan Metode Naive Bayes,” Pros. SNST ke-7 Tahun 2016, pp. 156–161, 2016.

T. S. Sabrila, V. R. Sari, and A. E. Minarno, “Analisis Sentimen Pada Tweet Tentang Penanganan Covid-19 Menggunakan Word Embedding Pada Algoritma Support Vector Machine Dan K-Nearest Neighbor,” Fountain Informatics J., vol. 6, no. 2, p. 69, 2021, doi: 10.21111/fij.v6i2.5536.

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” J. Media Inform. Budidarma, vol. 4, no. 3, p. 650, 2020, doi: 10.30865/mib.v4i3.2181.

A. Darliansyah, M. A. Naeem, F. Mirza, and R. Pears, “Sentipede: A smart system for sentiment-based personality detection from short texts,” J. Univers. Comput. Sci., vol. 25, no. 10, pp. 1323–1352, 2019.

S. Al-Saqqa and A. Awajan, “The Use of Word2vec Model in Sentiment Analysis: A Survey,” ACM Int. Conf. Proceeding Ser., pp. 39–43, 2019, doi: 10.1145/3388218.3388229.

S. K. Dirjen, P. Riset, D. Pengembangan, R. Dikti, H. N. Irmanda, and R. Astriratma, “Terakreditasi SINTA Peringkat 2 Klasifikasi Jenis Pantun dengan Metode Support Vector Machines (SVM),” Masa Berlaku Mulai, vol. 1, no. 3, pp. 915–922, 2017.

S. Rani and J. Singh, “Sentiment Analysis of Tweets Using Support Vector Machine,” Int. J. Comput. Sci. Mob. Appl., vol. 5, pp. 83–91, 2017, [Online]. Available: www.xyz.com

X. Rong, “word2vec Parameter Learning Explained,” 2014, [Online]. Available: http://arxiv.org/abs/1411.2738

Published
2023-01-26
Section
Articles
How to Cite
Hutapea, P. S., & Maharani, W. (2023). Sentiment Analysis on Twitter Social Media towards Shopee E-Commerce through Support Vector Machine (SVM) Method. JINAV: Journal of Information and Visualization, 4(1), 7-17. https://doi.org/10.35877/454RI.jinav1504