Retweet Predictions Regarding COVID-19 Vaccination Tweets through The Method of Multi Level Stacking
Viewed = 0 time(s)
Abstract
The rapid development of technology from day to day indirectly influences increasing social media use. This can be seen from spreading information that is very easily found on social media, one of which is Twitter. It is one of the most popular platforms for expressing people’s feelings by tweeting and interacting with other users at the same time. Various opinions about the COVID-19 vaccination began to be discussed on the Twitter platform. Moreover, most people take advantage of the feature available on Twitter, namely retweets. Users do retweet because there are many influencing factors. It can be caused by a reason that they have the same opinions and thoughts as the tweet owner, and so on. A retweet feature is also a form of information diffusion on the Twitter platform. The diffusion of information on Twitter has several factors, such as the most influential users, using hashtags or URLs, and others. In this conclusion, retweet predictions have been carried out regarding COVID-19 vaccination tweets using the features user-based and time-based through the Multi-Level Stacking classification method. This method indicates the best results when oversampling with an F1-Score of 96.23%.
References
Adrian, M. R., Putra, M. P., Rafialdy, M. H., & Rakhmawati, N. A. (2021). Perbandingan Metode Klasifikasi Random Forest dan SVM Pada Analisis Sentimen PSBB. Jurnal Informatika Upgris, 7(1). https://doi.org/10.26877/jiu.v7i1.7099
Bouazizi, M., & Ohtsuki, T. (2019). Multi-class sentiment analysis on twitter: Classification performance and challenges. Big Data Mining and Analytics, 2(3), 181–194. https://doi.org/10.26599/BDMA.2019.9020002
DR. SUYANTO, S. T. . M. S., ANDITYA ARIFANTO, S. T. . M. T., RITA RISMALA, S. T. . M. T., & DR. ANDI SUNYOTO., M. K. (2020). Evolutionary Machine Learning - Pembelajaran Mesin Otonom Berbasis Komputasi Evolusioner. 1–467.
Firdaus, S. N., Ding, C., & Sadeghian, A. (2018). Retweet: A popular information diffusion mechanism – A survey paper. Online Social Networks and Media, 6, 26–40. https://doi.org/10.1016/j.osnem.2018.04.001
Fitriansyah, R. A., & Saparudin. (2016). Penerapan Ensemble Stacking Untuk Klasifikasi Multi Kelas. 2(1), 240–243. http://ars.ilkom.unsri.ac.id
Hoang, T. B. N., & Mothe, J. (2018). Predicting information diffusion on Twitter – Analysis of predictive features. Journal of Computational Science, 28, 257–264. https://doi.org/10.1016/j.jocs.2017.10.010
Joukov Costa De Oliveira, N., Prof, A., Ribeiro, B., Prof, J., Rupino Da Cunha, P., & Abreu, P. (2018). Retweet Predictive Model in Twitter.
Mohbey, K. K. (2020). Multi-class approach for user behavior prediction using deep learning framework on twitter election dataset. Journal of Data, Information and Management, 2(1), 1–14. https://doi.org/10.1007/s42488-019-00013-y
Molaei, S., Zare, H., & Veisi, H. (2020). Deep learning approach on information diffusion in heterogeneous networks. Knowledge-Based Systems, 189. https://doi.org/10.1016/j.knosys.2019.105153
Purnajaya, A. R., & Kusuma, W. A. (2019). Prediksi Interaksi pada Jejaring Bipartite Senyawa dan Protein pada Data yang Tidak Seimbang. January, 1–41. https://www.researchgate.net/publication/337185001_Prediksi_Interaksi_pada_Jejaring_Bipartite_Senyawa_dan_Protein_pada_Data_yang_Tidak_Seimbang
Singh, S., Yassine, A., & Benlamri, R. (2020). Internet of Energy: Ensemble Learning through Multilevel Stacking for Load Forecasting. Proceedings - IEEE 18th International Conference on Dependable, Autonomic and Secure Computing, IEEE 18th International Conference on Pervasive Intelligence and Computing, IEEE 6th International Conference on Cloud and Big Data Computing and IEEE 5th Cyber Science and Technology Congress, DASC/PiCom/CBDCom/CyberSciTech 2020, 658–664. https://doi.org/10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00113
Tane, O. Z. A., Lhaksmana, K. M., & Nhita, F. (2019). Analisis Sentimen pada Twitter Tentang Calon Presiden 2019 Menggunakan Metode SVM (Support Vector Machine). Seminar Nasional Teknologi Fakultas Teknik Universitas Krisnadwipayana, 1(1), 739–742.
Tempola, F., Muhammad, M., & Khairan, A. (2018). Perbandingan Klasifikasi Antara KNN dan Naive Bayes pada Penentuan Status Gunung Berapi dengan K-Fold Cross Validation. Jurnal Teknologi Informasi Dan Ilmu Komputer, 5(5), 577. https://doi.org/10.25126/jtiik.201855983
Copyright (c) 2023 Vena Erla Candrika, Jondri, Indwiarti
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.