Prediction of Rice Farming Yields in Padangsidimpuan City through Support Vector Machine (SVM) Algorithms

  • Silviana Ayu Siregar Department of Computer Science, Faculty of Science and Technology, Universitas Islam Negeri Sumatera Utara, Medan, Indonesia (ID)
  • Yusuf Ramadhan Nasution Department of Computer Science, Faculty of Science and Technology, Universitas Islam Negeri Sumatera Utara, Medan, Indonesia (ID)
Keywords: Rice Farming, Prediction, SVM

Viewed = 0 time(s)

Abstract

The purpose of this study is to determine the prediction of rice farming yields in Padangsidimpuan City through SVM (Support Vector Machine) Algorithms. This type of research used quantitative methods of SVM (Support Vector Machine) with a Data-Driven development (DDD) method. This approach utilized patterns and trends in data to build accurate prediction models where the DDD method can be used when researchers have access to relevant and meaningful data to guide the development of software or prediction models.The SVM algorithm has proven to be effective in predicting rice yield trends, both in determining the direction of change (up or down) and in estimating the value of the next harvest. The implemented SVM model is able to identify patterns of change in historical data and provide relevant predictions for agricultural yields. Historical data covering a fairly long period of time provides sufficient information for models to identify trends and patterns. This model can provide better predictions with more complete and high-quality data. 



References

Budi, A. S., Susilo, P. H., Informatika, T., Teknik, F., Lamongan, U. I., Panen, H., & Padi, T. (2021). 583-1273-1-PB (Metode svm). 6(1).

Kurniawan, R., Halim, A., & Melisa, H. (2023). KLIK: Kajian Ilmiah Informatika dan Komputer Prediksi Hasil Panen Pertanian Salak di Daerah Tapanuli Selatan Menggunakan Algoritma SVM (Support Vector Machine). Media Online), 4(2), 903–912. https://doi.org/10.30865/klik.v4i2.1246

Published
2024-08-10
Section
Articles
How to Cite
Ayu Siregar, S., & Nasution , Y. R. (2024). Prediction of Rice Farming Yields in Padangsidimpuan City through Support Vector Machine (SVM) Algorithms. JINAV: Journal of Information and Visualization, 5(1), 146-156. https://doi.org/10.35877/454RI.jinav2876