Fuzzy Geographically Weighted Clustering Analysis of Poverty Indicators in South Sulawesi, Indonesia
DOI:
https://doi.org/10.35877/454RI.jinav3949Keywords:
Cluster Analysis, Fuzzy Geographically Weighted Clustering, Poverty IndicatorsAbstract
Cluster analysis is a method used to group data into several clusters, where the data within a single cluster exhibit high similarity, while the data between clusters show low similarity. This study aims to classify the regencies and cities in South Sulawesi based on poverty indicators using the Fuzzy Geographically Weighted Clustering (FGWC) method. FGWC is an integration of the classical fuzzy clustering approach with geo-demographic components, incorporating geographical aspects into the analysis. As a result, the clusters formed are sensitive to environmental effects, which influence the values of cluster centers. In this study, the optimal number of clusters was determined using the IFV (Index of Fuzzy Validity) validity index, which indicated an optimal solution of three clusters. Cluster 1 consists of 9 regencies/cities characterized by a high level of poverty. Cluster 2 comprises 7 regencies/cities with a moderate level of poverty. Cluster 3 includes 8 regencies/cities with a low level of poverty.
References
Hidayah, A. N. (2024). Penerapan metode fuzzy geographically weighted clustering pada pengelompokan Kabupaten/Kota di Provinsi Jawa Timur berdasarkan kasus penyakit. http://etheses.uin-malang.ac.id/id/eprint/65340%0Ahttp://etheses.uin-malang.ac.id/65340/1/17610004.pdf
Maliku, E. T., Rais, & Fajri, M. (2022). Pengelompokan Kabupaten/Kota di Provinsi Sulawesi Tengah Berdasarkan Indikator Pembangunan Ekonomi Menggunakan Fuzzy Geographically Weighted Clustering. JURNAL ILMIAH MATEMATIKA DAN TERAPAN, 19(1), 130–143. https://doi.org/10.22487/2540766x.2022.v19.i1.15868
Manfaati Nur, I., Rizky, M., & Putri Milasari, S. (2023). Pengelompokan Tingkat Kemiskinan di Provinsi Jawa Barat dengan Metode K-Means Clustering Info Artikel. 1(2), 51–61. https://doi.org/10.26714/jodi
Mashfufah, S., Nur, I. M., & Darsyah, M. Y. (2021). Fuzzy Geographically Weighted Clustering dengan Gravitational Search Algorithm pada Kasus Penyandang Masalah Kesejahteraan Sosial di Provinsi Jawa Tengah. Jurnal Litbang Edusaintech, 2(1), 27–36. https://doi.org/10.51402/jle.v2i1.10
Mason, G. A., & Jacobson, R. D. (2006). Fuzzy Geographically Weighted Clustering. 1998, 1–7.
Nugroho, A. S. (2019). Analisis Clustering Dengan Fuzzy Geographically Weighted Clustering (Fgwc) Pada Indikator Indeks Pembangunan Manusia Di Indonesia. 44(12), 2–8. http://repository.unimus.ac.id/3825/
Nurohmah, Y., Mayasari, R., & Nurina Sari, B. (2023). Optimalisasi Performa K-Means Clustering Dengan Pca Dalam Analisis Tingkat Kemiskinan Di Jawa Barat. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1657–1665. https://doi.org/10.36040/jati.v7i3.6884
Padambo, M. R., Kawung, G. M. V, & Rompas, W. F. I. (2021). Analisis Pengaruh Petumbuhan Ekonomi Inflasi Dan Indeks Pebangunan Manusia Terhadap Kemiskinan Di Provinsi Sulawesi Selatan. Jurnal Berkala Ilmiah Efisiensi, 21(5), 15–27. https://ejournal.unsrat.ac.id/index.php/jbie/article/view/36628
Paramadina, M., Sudarmin, S., & Aidid, M. K. (2019). Perbandingan Analisis Cluster Metode Average Linkage dan Metode Ward (Kasus: IPM Provinsi Sulawesi Selatan). VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 1(2), 22. https://doi.org/10.35580/variansiunm9357
Sumayya, D. (2016). Fuzzy Geographically Weighted Clustering Untuk Pengelompokan Indikator Kesejahteraan Rakyat Di Provinsi Jawa Tengah. 1–23.
Syifa Nabilah Wandira, Zilrahmi, Syafriandi Syafriandi, & Fadhilah Fitri. (2023). Fuzzy Geographically Weighted Clustering Analysis for Sectoral Potential Gross Regional Domestic Product in West Sumatera. UNP Journal of Statistics and Data Science, 1(5), 405–412. https://doi.org/10.24036/ujsds/vol1-iss5/109


