Classification of Stunting Status Using the Naive Bayes Classifier Algorithm with Backward Elimination Feature Selection

Authors

  • Hafni Maya Sari Pasaribu Universitas Malikussaleh
  • Dahlan Abdullah Universitas Malikussaleh
  • Lidya Rosnita Universitas Malikussaleh

DOI:

https://doi.org/10.35877/454RI.jinav4100

Keywords:

Classfication; Stunting; NBC; Backward Elimination

Abstract

Stunting is one of the major health issues affecting toddlers that can influence their physical growth and developmental progress, ultimately impacting their quality of life. It is characterized by a child’s height being below the standard for their age. To address this issue, a method is needed to classify the stunting status in toddlers. This study aims to classify stunting status in toddlers using the Naive Bayes Classifier algorithm, with feature selection performed using the Backward Elimination method to improve classification accuracy.The dataset used in this research was collected in 2023 from the Lueng Daneun Public Health Center, located in Peusangan Simblah Krueng Subdistrict, Bireun District. The dataset includes several features such as age, gender, family income, height, weight, sanitation, clean water access, and formula milk consumption. The application of the backward elimination feature selection method is intended to identify the most significant and relevant features for the target variable. The Naive Bayes Classifier was implemented using the Python programming language. The analysis results indicated that the remaining feature, namely the sanitation condition, had a significant contribution to the classification process. The dataset consisted of 244 entries, divided into 195 training data and 49 testing data with an 80:20 ratio. The initial classification results showed an accuracy of 77.55%, a precision of 60.00%, a recall of 64.29%, and an F1-score of 62.07%. After feature selection, the accuracy increased to 81.63%, precision to 63.16%, recall to 85.71%, and the F1-score slightly improved to 72.73%. These results indicate that feature selection in the Naive Bayes model demonstrates good performance.

References

Achmad Saiful Rizal, & Moch. Lutfi. (2020). Prediksi Hasil Pemilu Legislatif Menggunakan Algoritma K-Nearest Neighbor Berbasis Backward Elimination. Jurnal RESISTOR (Rekayasa Sistem Komputer), 3(1), 27–41. https://doi.org/10.31598/jurnalresistor.v3i1.517
Agustian, P. C. (2022). Pembagian Hak Waris Menggunakan Metode Naive Bayes Clasification. JIFT (Jurnal Informatika), 1(1), 26–30. https://doi.org/10.37150/jift.v1i1.2035
Annur, H. (2022). Penerapan Algoritma Naïve Bayes Berbasis Backward Elimination Untuk Prediksi Pemesanan Kamar Hotel. Jurnal Ilmiah Ilmu Komputer Banthayo Lo Komputer, 1(1), 1–5. https://doi.org/10.37195/balok.v1i1.99
Gamadarenda, I. W., & Waspada, I. (2020). Implementasi Data Mining untuk Deteksi Penyakit Ginjal Kronis (PGK) menggunakan K-Nearest Neighbor (KNN) dengan Backward Elimination. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(2), 417. https://doi.org/10.25126/jtiik.2020721896
Kementrian Kesehatan RI. (2022). Buku Saku Hasil Studi Status Gizi Indonesia (SSGI) Tingkat Nasional, Provinsi, dan Kabupaten/Kota Tahun 2022. Badan Kebijakan Pembangunan Kesehatan.
Lonang, S., & Normawati, D. (2022). Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination. Jurnal Media Informatika Budidarma, 6(1), 49. https://doi.org/10.30865/mib.v6i1.3312
Muktafin, E. H., Kusrini, K., & Luthfi, E. T. (2020). Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing. Jurnal Eksplora Informatika, 10(1), 32–42. https://doi.org/10.30864/eksplora.v10i1.390
Nurdin, N., Pradita, C. C., & Fadlisyah, F. (2023). Implementasi Data Mining Untuk Klasifikasi Menganalisis Kategori Kompetisi Mahasiswa Menggunakan Algoritma Apriori. SISFO: Jurnal Ilmiah Sistem Informasi, 7(1), 28–45. https://doi.org/10.29103/sisfo.v7i1.12104
Qamal, M., Syah, F., & Parapat, A. Z. I. (2023). Implentasi Data Mining Untuk Rekomendasi Paket Menu Makanan Dengan Menggunakan Algoritma Apriori. TECHSI - Jurnal Teknik Informatika, 14(1), 42. https://doi.org/10.29103/techsi.v14i1.6747
Rahman Hakim, Z., & Sugiyono, S. (2024). Analisa Sentimen Terhadap Kereta Cepat Jakarta – Bandung Menggunakan Algoritma Naïve Bayes Dan K-Nearest Neighbor. Jurnal Sains Dan Teknologi, 5(3), 939–945. https://doi.org/10.55338/saintek.v5i3.1423
Sari, D., Ningsih, A. D., & Azzahra. (2023). Pencegahan Stunting pada Anak Usia Dini Serta Dampaknya pada Faktor Pendidikan dan Ekonomi. Jurnal Pengabdian Pada Masyarakat Nusantara (JPKMN), 4(3), 2679–2678. https://doi.org/10.55338/jpkmn.v4i3.1591
Yunus, M., Muhammad Kunta Biddinika, & Fadlil, A. (2023). Optimasi Algoritma Naïve Bayes Menggunakan Fitur Seleksi Backward Elimination untuk Klasifikasi Prevalensi Stunting. Decode: Jurnal Pendidikan Teknologi Informasi, 3(2), 278–285. https://doi.org/10.51454/decode.v3i2.188
Yuwanti, Y., Mulyaningrum, F. M., & Susanti, M. M. (2021). Faktor – Faktor Yang Mempengaruhi Stunting Pada Balita Di Kabupaten Grobogan. Jurnal Keperawatan Dan Kesehatan Masyarakat Cendekia Utama, 10(1), 74. https://doi.org/10.31596/jcu.v10i1.704

Downloads

Published

2025-06-30

How to Cite

Pasaribu, H. M. S., Abdullah, D., & Rosnita, L. (2025). Classification of Stunting Status Using the Naive Bayes Classifier Algorithm with Backward Elimination Feature Selection. JINAV: Journal of Information and Visualization, 6(1), 17–25. https://doi.org/10.35877/454RI.jinav4100

Issue

Section

Articles