DigiField: Real-Time Smart Farming Monitoring System Using React.js and Express.js for Agricultural Digitalization

Authors

  • Basuki Rahim Setya Permana Universitas Bina Bangsa
  • Sigit Auliana Universitas Bina Bangsa
  • Rizqi Kevin Octavian Universitas Bina Bangsa

DOI:

https://doi.org/10.35877/454RI.jinav4160

Keywords:

Smart Farming, React.js, Web-based Monitoring System, Soil Moisture, Real-Time Data, DigiField, Agricultural Technology.

Abstract

The agricultural sector remains a cornerstone of Indonesia’s economy, yet it faces persistent challenges such as climate change, land degradation, and limited adoption of digital technology among smallholder farmers. One critical issue is the lack of real-time monitoring systems accessible to farmers for tracking essential environmental parameters such as soil moisture and temperature. Traditional manual methods are still widely used, leading to inefficiencies and suboptimal decision-making. This study proposes the development of DigiField, a smart farming monitoring system designed to bridge the technological gap in rural agriculture by leveraging modern web technologies. The system is developed using the React.js framework for the frontend, enabling a dynamic, responsive, and mobile-friendly user interface, and Express.js for the backend to facilitate real-time data processing from sensor devices. The research adopts a technology-based development approach, involving needs analysis from field observations and interviews with local farmers. The DigiField prototype is designed to monitor soil moisture and temperature using sensor data that is transmitted and visualized in real-time through a web interface. The system aims to support data-driven agricultural decision-making and enhance productivity through accessible, low-cost technology. Preliminary testing and user feedback indicate that DigiField is effective in addressing local agricultural monitoring needs, with a user interface that is intuitive for farmers and a backend infrastructure that supports real-time updates. This study contributes to both academic discourse in the field of agricultural informatics and practical efforts to promote digital transformation in Indonesia’s agricultural sector.

References

Allcott, H., & Gentzkow, M. (2017). Social media and fake news in the 2016 election. Journal of Economic Perspectives, 31(2), 211–236. https://doi.org/10.1257/jep.31.2.211

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann.

Joachims, T. (1998). Text categorization with Support Vector Machines: Learning with many relevant features. In Proceedings of the 10th European Conference on Machine Learning (ECML), 137–142. https://doi.org/10.1007/BFb0026683

Kusuma, A. H., & Wahyudi, A. (2021). Implementasi TF-IDF dan SVM untuk Klasifikasi Berita Hoax Berbahasa Indonesia. Jurnal Teknologi dan Sistem Komputer, 9(1), 45–50. https://doi.org/10.14710/jtsiskom.9.1.45-50

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press. https://doi.org/10.1017/CBO9780511809071

Pennycook, G., & Rand, D. G. (2018). The Implied Truth Effect: Attaching Warnings to a Subset of Fake News Stories Increases Perceived Accuracy of Stories Without Warnings. Management Science, 66(11), 4944–4957. https://doi.org/10.1287/mnsc.2019.3478

Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2019). Fake News Detection on Social Media: A Data Mining Perspective. ACM SIGKDD Explorations Newsletter, 19(1), 22–36. https://doi.org/10.1145/3137597.3137600

Wardani, R. S. (2020). Analisis Penyebaran Berita Hoax di Media Sosial dan Dampaknya terhadap Stabilitas Nasional. Jurnal Ilmu Sosial dan Ilmu Politik, 24(2), 101–115. https://doi.org/10.22146/jsp.54620

Alim, M. A. (2020). Penerapan Algoritma SVM untuk Klasifikasi Teks Berita Hoax. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(2), 123–130. https://doi.org/10.1234/jtiik.v7i2.1234

Budiharto, W., & Meiliana. (2018). Prediction and analysis of Indonesia presidential election from Twitter using sentiment analysis. Journal of Big Data, 5(1), 1–10. https://doi.org/10.1186/s40537-018-0140-8

Dhanapal, P., & Sivakumar, P. (2021). Machine learning based fake news detection: A survey. Materials Today: Proceedings, 45(3), 3184–3190. https://doi.org/10.1016/j.matpr.2020.10.381

Fitriyani, F. (2020). Analisis Sistem Informasi dalam Mendukung Pengambilan Keputusan. Jurnal Sistem Informasi dan Teknologi, 9(1), 22–29. https://doi.org/10.21009/jsit.091.03

Handayani, A. (2020). Dampak Berita Hoax terhadap Masyarakat Indonesia di Era Digital. Jurnal Komunikasi dan Media, 8(1), 55–64. https://doi.org/10.21009/jkm.081.06

Downloads

Published

2025-06-30

How to Cite

Permana, B. R. S., Auliana, S., & Octavian, R. K. (2025). DigiField: Real-Time Smart Farming Monitoring System Using React.js and Express.js for Agricultural Digitalization. JINAV: Journal of Information and Visualization, 6(1), 113–122. https://doi.org/10.35877/454RI.jinav4160

Issue

Section

Articles