Detecting Hoax News with Web-Based SVM Classifier: A Machine Learning Approach to Combat Misinformation Using Support Vector Machine (SVM) Algorithm
DOI:
https://doi.org/10.35877/454RI.jinav4161Keywords:
Hoax Detection, Support Vector Machine, Text Classification, TF-IDF, Web Application.Abstract
The massive spread of hoax news in the digital era has caused various negative impacts, ranging from public misinformation to social unrest. This condition highlights the need for a technological solution capable of automatically and accurately detecting the truthfulness of information. This study aims to develop a web-based application for hoax news detection using the Support Vector Machine (SVM) algorithm. The method involves text preprocessing, feature extraction using Term Frequency-Inverse Document Frequency (TF-IDF), and classification with SVM. The system is designed with a simple and responsive web interface, allowing users to input news content and receive prediction results easily. Testing was conducted using both white-box and black-box methods to ensure that the system's logic functioned as expected. The results show that the system successfully classifies news into two categories—valid and hoax—with good accuracy. This application is expected to serve as a useful tool for the public in identifying the authenticity of news and preventing the spread of false information across digital platforms.
References
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann.
Joachims, T. (1998). Text categorization with Support Vector Machines: Learning with many relevant features. In Proceedings of the 10th European Conference on Machine Learning (ECML), 137–142. https://doi.org/10.1007/BFb0026683
Kusuma, A. H., & Wahyudi, A. (2021). Implementasi TF-IDF dan SVM untuk Klasifikasi Berita Hoax Berbahasa Indonesia. Jurnal Teknologi dan Sistem Komputer, 9(1), 45–50. https://doi.org/10.14710/jtsiskom.9.1.45-50
Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press. https://doi.org/10.1017/CBO9780511809071
Pennycook, G., & Rand, D. G. (2018). The Implied Truth Effect: Attaching Warnings to a Subset of Fake News Stories Increases Perceived Accuracy of Stories Without Warnings. Management Science, 66(11), 4944–4957. https://doi.org/10.1287/mnsc.2019.3478
Shu, K., Sliva, A., Wang, S., Tang, J., & Liu, H. (2019). Fake News Detection on Social Media: A Data Mining Perspective. ACM SIGKDD Explorations Newsletter, 19(1), 22–36. https://doi.org/10.1145/3137597.3137600
Wardani, R. S. (2020). Analisis Penyebaran Berita Hoax di Media Sosial dan Dampaknya terhadap Stabilitas Nasional. Jurnal Ilmu Sosial dan Ilmu Politik, 24(2), 101–115. https://doi.org/10.22146/jsp.54620
Alim, M. A. (2020). Penerapan Algoritma SVM untuk Klasifikasi Teks Berita Hoax. Jurnal Teknologi Informasi dan Ilmu Komputer, 7(2), 123–130. https://doi.org/10.1234/jtiik.v7i2.1234
Budiharto, W., & Meiliana. (2018). Prediction and analysis of Indonesia presidential election from Twitter using sentiment analysis. Journal of Big Data, 5(1), 1–10. https://doi.org/10.1186/s40537-018-0140-8
Permana, B. R. S., & Panudju, A. T. (2020). Comparison and performance analysis of svm and pso-svm algorithms (Case Study classification of senior high school). International Journal of Research and Innovation in Applied Science (IJRIAS), 5, 81-88.
Dhanapal, P., & Sivakumar, P. (2021). Machine learning based fake news detection: A survey. Materials Today: Proceedings, 45(3), 3184–3190. https://doi.org/10.1016/j.matpr.2020.10.381
Fitriyani, F. (2020). Analisis Sistem Informasi dalam Mendukung Pengambilan Keputusan. Jurnal Sistem Informasi dan Teknologi, 9(1), 22–29. https://doi.org/10.21009/jsit.091.03


